Thermal Conductivity of Polymer Composites Filled with Nanofillers
نویسنده
چکیده
Polymer nanocomposites are composed of polymer materials reinforced with nano fillers.In the present study the effective thermal conductivity of the composites filled with nanofillers has been investigated using commercially available finite element software ABAQUS 6.11. The nanofillers used were alumina particles and multi-walled carbon nanotubes (MWNTs) and the matrix was considered to be made of epoxy. For the analysis 2D and 3D Representative Volume Elements (RVEs) were generated using Random Sequential Adsorption (RSA) algorithm using MATLAB and Python scripts. Thermal conductivity was found out for 2D and 3D RVEs for different area and weight fractions respectively. Two different shapes of the alumina nanoparticles were considered: spherical (circular) and ellipsoidal (elliptical) for 3D (2D) analysis. It was found that the thermal conductivity was increased with the addition of nanofillers. The increase in thermal conductivity was approximately same for both types of inclusions at corresponding area or weight fractions in 2D or 3D analysis. The results showed that addition of MWNTs to the composites lead to a significant increase in thermal conductivity than spherical or ellipsoidal inclusions.
منابع مشابه
Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets
One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-d...
متن کاملMetal Powder-filled Polyethylene Composites. v. Thermal Properties Metal Powder-filled Polyethylene Composites. v. Thermal Properties
Thermal properties—such as thermal conductivity, thermal diffusivity, and specific heat—of metal (copper, zinc, iron, and bronze) powder-filled high-density polyethylene composites are investigated experimentally in the range of filler content 0–24% by volume. Experimental results show a region of low particle content, 0–16% by volume, where the particles are distributed homogeneously in the po...
متن کاملEffective thermal conductivity of metal filled polymer composites
Theoretical model for predicting effective thermal conductivity (ETC) of metal filled polymer composites has been developed. The concept of averaging the temperature field within different phases has been used. Resistor model has been applied to determine ETC of polymer composites. A parameter estimation technique has been applied to determine the inclination angle θ. An effort has been made to...
متن کاملA Computational Investigation on Thermal Conductivity of Pine Wood Dust Filled Epoxy Composites
Experimental and computational investigation on the thermal conductivity in particulate filler filled (pine wood dust) epoxy composites have been studied in the present work. The thermal conductivity of particulate filled polymer composite is calculated experimentally using Unitherm Model 2022. This study shows that the incorporation of wood dust results in reduction of conductivity of epoxy re...
متن کاملProperties of Polymer Composites Used in High-Voltage Applications
The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016